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Abstract—Spatial misalignment caused by variations in poses
and viewpoints is one of the most critical issues that hinders
the performance improvement in existing person re-identification
(Re-ID) algorithms. To address this problem, in this paper,
we present a robust and efficient graph correspondence trans-
fer (REGCT) approach for explicit spatial alignment in Re-
ID. Specifically, we propose to establish the patch-wise corre-
spondences of positive training pairs via graph matching. By
exploiting both spatial and visual contexts of human appearance
in graph matching, meaningful semantic correspondences can be
obtained. To circumvent the cumbersome on-line graph matching
in testing phase, we propose to transfer the off-line learned patch-
wise correspondences from the positive training pairs to test
pairs. In detail, for each test pair, the training pairs with similar
pose-pair configurations are selected as references. The matching
patterns (i.e., the correspondences) of the selected references
are then utilized to calculate the patch-wise feature distances
of this test pair. To enhance the robustness of correspondence
transfer, we design a novel pose context descriptor to accurately
model human body configurations, and present an approach to
measure the similarity between a pair of pose context descriptors.
Meanwhile, to improve testing efficiency, we propose a correspon-
dence template ensemble method using the voting mechanism,
which significantly reduces the amount of patch-wise matchings
involved in distance calculation. With aforementioned strategies,
the REGCT model can effectively and efficiently handle the
spatial misalignment problem in Re-ID. Extensive experiments on
five challenging benchmarks, including VIPeR, Road, PRID450S,
3DPES and CUHK01, evidence the superior performance of
REGCT over other state-of-the-art approaches.

Index Terms—Person re-identification (Re-ID), graph match-
ing, correspondence transfer, pose context descriptor, correspon-
dence template ensemble.

I. INTRODUCTION

PERSON re-identification (Re-ID), which aims to associate
a probe image to images in the gallery set (usually across

different non-overlapping camera views), plays a crucial role
in various applications including video surveillance, human-
computer interaction, etc. Despite great successes in recent
years, accurate Re-ID remains challenging due to many factors
such as large human appearance changes in different camera
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(a) Spatial misalignment among local patches

(b)  Patch-wise correspondences learned by graph matching

Mismatching between local patches
Matching between local patches

Fig. 1: Illustration of the spatial misalignment problem in Re-ID.
Image (a) illustrate the spatial misalignment problem (i.e., spatially
corresponding patches do not indicate correct semantic patch-wise
matching) caused by pose and viewpoint changes. The proposed
REGCT model can capture the correct semantic matching among
patches using patch-wise graph matching, as shown in image (b).

views and heavy body occlusions. To deal with these issues,
numerous Re-ID approaches have been proposed [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11].

For Re-ID, a major challenge is to deal with the inevitable
spatial misalignment problem between image pairs caused by
large variations in camera views and human poses, as shown
in Fig. 1. Most existing methods [12], [13], [14], nevertheless,
focus on addressing the problem of Re-ID by comparing the
holistic visual differences between images, which ignore the
spatial misalignment problem. To alleviate this issue, there
are some attempts to apply part-based approaches to handle
misalignment [15], [16], [3], [17]. These methods divide
objects into local patches and perform an on-line patch-level
matching for Re-ID. Though these approaches can handle
spatial misalignment to some extent, being in lack of modeling
the spatial and visual context information among local patches
during correspondence learning, they still fail in presence of
visually similar body appearances, or occlusions. Some other
algorithms divide the images into fixed stripes, and extract
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Fig. 2: Illustration of the fact that on-line graph matching is not suitable for
generating semantic correspondences between negative pairs.

visual statistics from each stripe, assuming that the human
body is centered and consistently cropped within the bounding
boxes [7], [4]. However, it is often not the case that human
body is optimally cropped, especially when the bounding
boxes are generated by pedestrian detection algorithms.

Intuitively, patch-wise correspondences are spatially and
visually compatible to make reasonable semantic matchings.
As shown in Fig. 1(b), spatial compatibility means that the
semantically corresponding patch is supposed to exist in the
local neighborhood of the probe patch in the image plane (This
ensures that a patch of the head should not be matched with
a patch on the leg). On the other hand, visual compatibility
indicates that semantic matchings should be visually similar.
Based on these two basic assumptions, we propose to automat-
ically discover the patch-level semantic matching patterns for
each positive training pair via graph matching. In our model,
both spatial and visual contexts are taken into consideration
to establish accurate semantic patch-wise matching results. By
using the part-based strategy and implicitly modeling body
context information into graph matching, our REGCT algo-
rithm is able to deal with the spatial misalignment problem.

Although graph matching is straightforward for establishing
semantic correspondences between positive image pairs, we
argue that it is not suitable for negative ones. As shown in
Fig. 2, on-line graph matching may establish correspondences
between the two red patches, since they are spatially and
visually compatible within this image pair. However, they are
not semantic matchings (one belongs to the torso, while the
other belongs to the bag). To address this issue, instead of
directly estimating the patch-wise matchings between each test
pair, we propose to transfer the off-line learned patch-wise
matchings from the positive training pairs to the test pairs for
performance evaluation.

The concept of correspondence transfer is based on the
observation that two image pairs with similar pose-pair con-
figurations tend to share similar patch-level correspondences
(as shown in Fig. 3). To better represent the human body
configurations, we design a novel pose context descriptor
to capture the spatial context of body joints. For each pair
of test samples, their pose context descriptors are compared
with the pose context descriptors of all the positive training
pairs, and the training pairs with the most similar pose-pair
configurations are selected as references. Finally, the matching

v

(a) (b)

Fig. 3: The observation that two image pairs with similar pose-pair config-
urations tend to share similar patch-wise correspondences. For example, the
left/right images in (a) have similar poses w.r.t. the left/right image in (b).
Therefore, the patch-wise matchings denoted by bounding boxes of the same
colors in (a) are similar to matchings in (b). Best viewed in color.

patterns of those referred training pairs are utilized to compute
the overall feature distance between this test pair.

In summary, we make the following contributions: (1) We
for the first time propose a novel robust and efficient graph
correspondence transfer (REGCT) model for Re-ID, which
takes into account both spatial and visual contexts to handle
the spatial misalignment problem by establishing semantic
patch-wise matchings between positive training pairs. (2) We
introduce the pose context descriptor to accurately model the
body configurations for more robust correspondence transfer.
(3) We present a voting based strategy to integrate multiple
noisy correspondence templates into a more compact patch-
wise matching pattern, which not only reduces the computa-
tional load, but also improves the robustness of correspondence
transfer. (4) Extensive experiments on five benchmarks demon-
strate that our REGCT model performs favorably against state-
of-the-art approaches, and in fact even better than many deep
learning based solutions.

This paper is an extended version of our preliminary
work [18]. The main differences from [18] include: (1) For
correspondence transfer, we propose a novel pose context
descriptor based on the topology structure of the estimat-
ed joint locations [19], which improves the robustness of
correspondence transfer and demonstrates superior recogni-
tion performance compared with the body orientation based
transfer in [18]. (2) We present a voting based approach
to integrate multiple noisy correspondence templates into a
compact matching pattern, resulting in computation reduction
as well as robustness improvement during testing. (3) We con-
duct more ablative studies to analyze each component in our
REGCT model and give insights into the best configurations
of different parameter settings. (4) Notable performance gains
are obtained with the above-mentioned contributions compared
to [18].

II. RELATED WORK

Being extensively studied, Re-ID has drawn extensive atten-
tion in the past years. For a comprehensive survey, please refer
to [20], [21]. In this section, we briefly review existing Re-ID
algorithms from three perspectives: (1) feature representation
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based methods that focus on designing sophisticated features
to better represent the human appearance, (2) metric learning
based algorithms that pursue discriminative subspaces where
features of the same person sit closer than those of different
individuals, and (3) deep learning based approaches that aim to
learn discriminative representations through end-to-end deep
architecture modeling.

1) Feature Designing Algorithms: The early works on per-
son re-identification focus on designing representative features
to pursue identity invariance across different cameras. In
order to improve the representative and discriminative ability
of hand-crafted features, various visual cues are exploited.
In [1], three complementary visual cues are used to model the
human appearance: the overall chromatic content, the spatial
arrangement of colors into stable regions, and the presence of
recurrent local motifs with high entropy. Besides, symmetry
and asymmetry body structure information are applied to
localize the vertical axis of human body, and the local features
are reweighted by the distance with respect to the vertical
axis such that the effects of pose variations are minimized.
The work of [22] proposes a spatio-temporal segmentation
algorithm to generate salient edges and combines these salient
edges with normalized colors to design invariant signatures.
Other feature descriptors, including fisher vector encoded
local descriptor [23], HPEsignature [24] and mean riemannian
covariance grid [25], are also introduced to better represent
the human appearance. Even though carefully designed, hand-
crafted features are limited in modeling human appearance
in complicated scenes. Therefore, some researchers resort
to leveraging learning techniques to model middle or high-
level information of human appearance. Representative works
include attribute assisted clothes appearance [26], dictionary
learning base features [27], [28] etc.

2) Metric Learning Algorithms: Metric learning methods,
on the other hand, aim to learn an optimal subspace where the
intra-person divergence is minimized and meanwhile the inter-
person divergence is maximized. In [5], a simple while effec-
tive strategy is proposed to infer the distance from equivalence
constraints. In requirement of no iterations for optimization,
the algorithm of [5] runs efficiently and can benefit large
scale re-identification. PCCA [8] presents a method to learn a
low-dimensional discriminative subspace from sparse pairwise
similar/disimilar constraints. The authors further introduce the
“kernel trick” to generalize PCCA to the nonlinear cases. Local
fisher discriminant analysis is introduced in [10] to perform
discriminative feature dimension reduction based on which
the intra-class instances are pulled together while inter-class
ones are pushed apart. To better leverage the advantages of
different metric learning methods, the work of [9] seeks metric
ensembles by learning to rank techniques. To alleviate the
spatial misalignment problem, [4] proposes to learn separate
sub-similarity functions for different sub-regions with the help
of polynomial feature maps, and complementary strength of
local similarities as well as global similarity are combined
together for better matching consistency.

3) Deep Learning for Re-ID: Recently deep convolutional
features have been demonstrated to significantly boost the
performance of various computer vision tasks including object

detection [29], [30], tracking [31], [32], object segmenta-
tion [33], [34], etc. Inspired by the powerful ability of deep
features, many researchers resort to building deep end-to-
end architectures to directly learn discriminative high-level
features for Re-ID. In [35], the authors propose a novel filter
pairing neural network (FPNN) to jointly handle misalign-
ment, photometric and geometric transforms, occlusions and
background clutter by designing corresponding layers to take
charge of each aspect. Ahmed et al. [36] introduce a novel
layer that computes cross-input neighborhood differences to
capture local relationships between the two input images,
and the cross-input neighborhood differences are aggregated
together to form a pairwise cross-view representation for a
pair of inputs. The work of [37] introduces a unified deep
learning-to-rank framework that learns joint representation and
similarities of image pairs directly from image pixels. In [38],
Xiao et al. present a novel domain guided dropout algorithm to
learn robust feature representations by leveraging information
from multiple domains.

The proposed algorithm belongs to the non-deep-learning
group. Instead of designing sophisticated features or pursing
discriminative distance metrics, we present a novel framework
to first establish local patch-wise correspondences, then aggre-
gate the patch-wise feature similarities for recognition. This
framework enjoys the flexibility that most of the aforemen-
tioned algorithms can be incorporated as part of it to improve
the final recognition performance. More specifically, off-the-
shelf hand-crafted or deep features can be used as visual cues
for graph nodes (image patches in our case) to build the affinity
matrix for graph matching. Once the local correspondences are
established, existing metric learning algorithms can be adopted
to pursue better similarity functions for calculating patch-wise
matching scores.

The most relevant work to ours is [15] in which a corre-
spondence structure learning (CSL) method is proposed for
Re-ID. However, our REGCT model significantly differs from
CSL [15] in two aspects: (i) Instead of learning a holistic
correspondence structure for each camera pair in CSL [15], we
leverage graph matching to establish accurate patch-wise cor-
respondences for each positive image pair in the training stage,
and then transfer the learned matching patterns for distance
calculation during testing. (ii) We model the spatial and visual
context information in the affinity matrix for graph matching,
which is neglected in CSL [15]. Due to the flexible and
accurate instance-specific patch-wise correspondence learning
and transfer, our algorithm demonstrates superior performance
over CSL [15] on all the five benchmarks.

III. OUR APPROACH

In this section, we first give a brief introduction on graph
matching, and then elaborate on the proposed REGCT algo-
rithm, which is composed of correspondence learning, ref-
erence selection, patch-wise feature distance calculation and
aggregation based on correspondence transfer. The overall
framework of the proposed REGCT algorithm is illustrated
in Fig. 4.
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Fig. 4: Illustration of the REGCT model. During training, spatial and visual context information are embedded into graph matching to
establish patch-wise matchings for positive training pairs with various pose-pair configurations. During testing, for a pair of test samples,
we choose a few positive training pairs with the most similar pose-pair configurations as references, and then transfer the correspondences
of these references to this test pair for feature distance calculation. Different from the preliminary work [18], a novel pose context
descriptor is proposed for more accurate body configuration comparison. Besides, the templates ensemble method is introduced to
pursue robust and efficient correspondence transfer during testing.

A. Graph Matching

Graph matching is a fundamental problem closely related to
many computer vision tasks including feature registration [39],
object recognition [40], visual tracking [41] and so on. In this
paper, we omit the detailed literature on graph matching, and
only present the commonly adopted formulation to provide
some insights into how graph matching is utilized to establish
correspondences. For a detailed survey on graph matching,
please refer to [42], [43].

Generally, a graph G = (V,E) of size n is defined on a finite
set of n vertices V = {vi}ni=1 and edges E ⊂ V × V . For two
graphs G1 = (V1, E1) of size n1 and G2 = (V2, E2) of size n2,
graph matching aims to find an optimal assignment matrix X ∈
{0, 1}n1×n2 , where Xij = 1 indicates an established correspondence
between node i in G1 and node j in G2. X can be optimized by
maximizing the following objective:

arg max
x

xTKx, (1)

where x ∈ {0, 1}n1n2 is the vector form of the assignment matrix
X , and K ∈ Rn1n2×n1n2 represents the affinity matrix that encodes
both the node similarity and edge compatibility information between
G1 and G2.

B. Patch-wise correspondence learning with graph matching
In this paper, we adopt the attributed graph to represent the human

body. Specifically, we decompose the images into many overlapping
patches, and represent each image with an undirected attributed graph
G = (V,E,A), where each vertex vi in the vertex set V = {vi}ni=1

denotes an image patch, each edge encodes the contextual information
of the connected vertex pair, and the vertex attributes A = {AP , AF }
represent spatial and visual features of local patches.

During training, given a pair of positive images I1 and I2 with
identity labels l1 and l2, where l1 = l2 (i.e., I1 and I2 belong to the
same person), they can be represented with attributed graphs G1 =
(V1, E1, A1) and G2 = (V2, E2, A2), respectively. The patch-wise
correspondence learning aims to establish the vertex correspondences
X ∈ {0, 1}n1×n2 between V1 with n1 vertices and V2 with n2

vertices, such that the intra-person matching score (i.e., l1 = l2) is
maximized on the training set.

In Re-ID, Xi1i2 = 1 means the i1-th patch in I1 is matched with
the i2-th patch in I2. We adopt the formulation in Eq. 1 to model
our patch-wise correspondence learning problem:

arg max
x

xTKx,

s.t.


Xi1i2 ∈ {0, 1}, ∀i1 ∈ {1, · · · , n1},∀i2 ∈ {1, · · · , n2}∑

i1
Xi1i2 ≤ 1,∀i2 ∈ {1, · · · , n2},∑

i2
Xi1i2 ≤ 1,∀i1 ∈ {1, · · · , n1},

(2)
where one-to-one matching constraints are imposed on the assign-
ment matrix X . We follow [44] to optimize Eq. 2.

1) Affinity matrix design: Due to the large variations in
human body configurations caused by heavy pose and view changes,
it is not suitable to directly apply traditional spatial layout based
affinity matrix for Re-ID. In addition, taking into consideration the
importance of visual appearance in Re-ID, we combine both visual
feature and spatial layout of human appearance to develop the affinity
matrix.

In specific, the diagonal components Ki1i2,i1i2 of the affinity
matrix K (which capture the node compatibility between vertex
vi1 ∈ V1 and vertex vi2 ∈ V2) are calculated as follows:

Ki1i2,i1i2 = SP
i1i2 · S

F
i1i2 , (3)

where SP
i1i2 and SF

i1i2 refer to the spatial proximity and visual
similarity between vi1 and vi2 respectively. The SP

i1i2 and SF
i1i2 can
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Fig. 5: Illustration of the spatially constrained patch-wise matching.
Following the commonly utilized stripe decomposition of the human
body [4], we first divide the probe image into a few stripes, then
the search space for each probe stripe is spatially constrained to its
local neighborhood (e.g., patches within the yellow stripe of the probe
image is constrained to be matched with patches in the corresponding
yellow stripe of the gallery image). To ensure that the counterpart
patch exists in the search space, the corresponding gallery stripe is
set to be larger than the probe stripe. Best viewed in color.

be mathematically computed as:

SP
i1i2 = exp(−‖AP

i1 −A
P
i2‖2),

SF
i1i2 = exp(−‖AF

i1 −A
F
i2‖2),

(4)

where AP
i1 and AP

i2 denote spatial positions of vi1 and vi2 , and AF
i1

and AF
i2 represent their visual features.

Likewise, for non-diagonal element Ki1i2,j1j2 in K, which en-
codes the compatibility between two matched vertex pairs (vi1 ∈
V1, vi2 ∈ V2) and (vj1 ∈ V1, vj2 ∈ V2), it can be obtained as the
following:

Ki1i2,j1j2 = SP
i1j1,i2j2 · S

F
i1j1,i2j2 , (5)

where SP
i1j1,i2j2 and SF

i1j1,i2j2 represent spatial and visual compat-
ibilities between matched patch pairs (vi1 , vi2) and (vj1 , vj2), and
they are calculated by

SP
i1j1,i2j2 = exp(−‖(AP

i1 −A
P
j1)− (AP

i2 −A
P
j2)‖2),

SF
i1j1,i2j2 = exp(−‖(AF

i1 −A
F
j1)− (AF

i2 −A
F
j2)‖2).

(6)

In this way, the calculated affinity matrix K implicitly embeds the
spatial and visual contextual information into the graph matching
procedure, such that during the optimization, correspondences with
larger node similarities and more compatible edges are selected.
Therefore, we can obtain a spatially and visually compatible patch-
wise matching result for Re-ID.

2) Spatially constrained matching: In existing part-based
Re-ID methods [15], [3], an image is typically decomposed into
hundreds of patches to capture detailed local visual information,
leading to intractability in solving Eq. (2). To reduce the search
space and inhibit potential matching ambiguity, similar to the com-
monly utilized spatial constraints [7], [4], we introduce the structure
constrained matching. More specifically, a probe image is divided
into a few horizontal stripes (non-overlapping), and for each probe
stripe, its search space for patch-wise matching is constrained to a
corresponding stripe in the gallery image (As shown in Fig. 5). Then
patch-wise matchings are established between the probe stripe and the
corresponding gallery stripe by optimizing Eq. (2). Fig. 5 illustrates
the process of spatially constrained patch-wise matching.

C. Reference selection via pose-pair configuration compari-
son

We argue that the learned patch-wise correspondence patterns can
be favorably transferred to image pairs with similar pose-pair con-
figurations in the testing set, and these transferred correspondences
can be directly utilized to compute the distance between probe and
gallery images in the test set (as demonstrated in Fig. 3). To this end,

right right-back back left-back

left left-front front right-front
Fig. 6: Sample images in eight classes in the TUD dataset [46]. Note
that the TUD dataset is only used for training the body orientation
classification model, and is different from the benchmark datasets in
our experiments.

we need to find out the best references for each test pair from the
training set.

In our preliminary study [18], we adopt body orientations to rough-
ly capture body configuration. However the representative ability of
body orientation is limited. In this paper, we propose a novel pose
context descriptor to model the relative spatial distributions of the
body joints to fully capture the spatial layout of human body. Please
note here the locations of the body joints can be easily obtained
with off-the-shelf pose estimation algorithms (e.g., [19]). For self-
completeness, we present both the orientation based and the pose
context descriptor based body configuration comparison strategies
and compare their recognition performance in the experimental part.

1) Comparing body configurations using body orienta-
tion: We propose to utilize a simple yet effective random forest
method [45] to compare different body orientations. Specifically, im-
ages are classified into eight different clusters including ‘left’, ‘right’,
‘front’, ‘back’, ‘left-front’, ‘right-front’, ‘left-back’ and ‘right-back’,
according to their body orientations, as shown in Fig. 6. In order to
train the random forest model, each image is represented with multi-
level HoG features (i.e., cell sizes are set to 8× 8, 16× 16, 32× 32
respectively, with a block size of 2×2 cells and a block stride of one
cell for each direction), and then fed into each decision tree to build
the random forest [45]. Once the random forest M = {Mi}|M|i=1

is built, where |M| denotes the number of trees in M, the body
configuration similarity O between two images Ii and Ij can be
calculated as:

O(Ii, Ij) =
1

|M|

|M|∑
m=1

ymij , (7)

where ymij is an indicator, and ymij = 1 if Ii and Ij arrive at the same
terminal node in Mm ∈M, otherwise ymij = 0.

2) Comparing body configurations using pose context
descriptor: To accurately model the human body configurations,
we propose a novel pose context descriptor, which captures the
relative spatial distribution across different joint pairs. In detail,
fourteen body joints (i.e., head, neck, left/right shoulders, left/right el-
bows, left/right wrists, left/right coxaes, left/eight knees and left/right
ankles) are estimated with the pre-trained model in [19], the spatial
locations of which are denoted as {Ji, i ∈ 1, · · · , 14}. Each joint is
then associated with a local polar coordinate system, centering at Ji.
Then for the other joints with locations {Jj , j ∈ {1, · · · , 14}, j 6= i},
we calculate a histogram for each Jj by considering the magnitudes
and angles of Jj in the polar system centered at Ji. In this way,
two pose context coding matrices Ψ ∈ R14×13,Φ ∈ R14×13 are
formed, where the element Ψ(i, j) in row i column j of Ψ contains
the magnitude bin that Jj lies in the polar system centered at Ji.
Likewise, Φ(i, j) is the angle bin that Jj lies in the polar system
centered at Ji. In this paper, the number of bins are set to 8 for both
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Fig. 7: Demonstration of reference selection results.

the magnitude and the angle. For a pair of images I1, I2, their pose
configuration similarity is calculated as:

O(I1, I2) = SΨ(Ψ1,Ψ2) · SΦ(Φ1,Φ2), (8)

where SΨ(Ψ1,Ψ2) is the similarity score between the magnitude
context matrices Ψ1 and Ψ2, and SΦ(Φ1,Φ2) is the similarity score
between the angle context matrices Φ1 and Φ2, which are calculated
as follows:

SΨ(Ψ1,Ψ2) = mean(exp(−d(Ψ1,Ψ2))), (9)

where d(·) is the element-wise Euclidean distance. Considering that
the angle bins are cyclic (e.g., 0 degree equals to 360 degree), we
design a cyclic Euclidean distance to capture the proximity between
angle bins,

SΦ(Φ1,Φ2) = mean(exp(−dc(Φ1,Φ2))), (10)

where dc(·) is the cyclic Euclidean distance. For a pair of counterpart
angle bins (Φ1(i, j) ∈ {1, · · · , 8},Φ2(i, j) ∈ {1, · · · , 8}), denote
the minimum bins from Φ1(i, j) to Φ2(i, j) in the angle circle as αij ,
then dc(Φ1(i, j),Φ2(i, j)) is calculated as dc(Φ1(i, j),Φ2(i, j)) =
α2
ij .
Given two image pairs P = (Ip, Ig) and P ′ = (I

′
p, I
′
g), their

pose-pair configuration similarity S(P, P ′) is computed as

So(P, P ′) = O(Ip, I
′
p) ·O(Ig, I

′
g), (11)

where O(Ip, I
′
p), O(Ig, I

′
g) can be obtained using Eq. (7) or Eq. (8).

With Eq. (11), we can calculate the body configuration similarities
between an test image pair and all the positive training image pairs.
Afterwards, R training image pairs with highest similarities are
selected as references for the test pair. And their learned patch-
wise matchings are utilized for distance calculation as described later.
Fig. 7 shows some selected references of the sample test pairs.

D. Distance calculation and aggregation with correspondence
transfer

Given that image pairs with similar pose-pair configurations tend
to share similar patch-level correspondences, for each test pair of
images, we propose to transfer the matching results of the selected
references (the way to select the references is presented in Sec-
tion III-C) to calculate the patch-wise feature distances of this test
pair. The details of feature distance calculation using the selected
references are presented in the following part.

Given a pair of test images P̄ = (Īp, Īg), where Īp and Īg are
the probe and gallery image respectively. Denote their corresponding
graphs as Ḡp = (V̄p, Ēp, Āp), Ḡg = (V̄g, Ēg, Āg), we can choose
R references for P̄ as described in Section 3.2. Let T = {Ti}Ri=1

represent the correspondence templates set composed by these R
references, where each template Ti = {cij}nj=1 contains n patch-wise
correspondences (n is the number of graph node in the probe image),

and each correspondence cij = (wp
ij , w

g
ij) denotes the indices of the

matched patches in the probe and gallery image (i.e., the wp
ij-th node

in Ḡp is matched to the wg
ij-th node in Ḡg).

For the test pair P̄ , we can compute the distance D between Īp
and Īg as the following:

D(Īp, Īg) =
1

R× n

R∑
i=1

n∑
j=1

δ(Āp,w
p
ij
, Āg,w

g
ij

), (12)

where δ(·, ·) denotes the distance metric (in this paper, we adopt
the KISSME metric [5]), Āp,w

p
ij

and Āg,w
g
ij

represent the visual
attributes of the wp

ij-th patch in the probe image Īp and the wg
ij-th

patch in the gallery image Īg respectively. In this paper, we use Local
Maximal Occurrence features [7] as the visual attributes of each node
(i.e., local patch).

With Eq. (12), we can calculate the average patch-wise feature
distance using all the correspondences (semantically matched patch
pairs between the probe and gallery image) of the selected reference
templates. For each probe image, the gallery image with the smallest
distance is determined to be the re-identifying result.

A more efficient solution for testing: As demonstrated in [18],
for larger or more challenging datasets (e.g., CUHK01,VIPeR etc.),
the number of selected reference templates R is suggested to be large
to accumulate enough correct patch-wise correspondences (e.g., R is
set to 20 for CUHK01 and VIPeR datasets). Therefore, according
to Eq. (12), for a dataset with N persons (in the single-shot case,
for N persons, there are N probe images and N gallery images),
the computational complexity involves R × n × N2 patch-wise
Mahalanobis distance calculations (here n is the number of the graph
node in the probe image).

In practical scenarios, it is desirable to have more efficient so-
lutions. Therefore, we present a new evaluation protocol to signif-
icantly reduce the computational load with competitive or better
performance. Since directly calculating the feature distances using
all the reference patch-wise correspondences is time-consuming, we
propose to aggregate the selected R reference matching templates
into k, k � R more compact matching patterns via a voting scheme.

According to Eq. (12), for each probe patch wp
ij ∈ {1, · · · , n} in

Īp, the i-th selected template matches it with patch wg
ij ∈ {1, · · · , n}

in Īg . Denote their spatial offset as:

∆(wp
ij , w

g
ij) = L(wg

ij)− L(wp
ij), (13)

where L(wp
ij) denotes the center location for the wp

ij-th patch.
Then for each probe patch wp

ij , we can obtain a set of suggested
matching patches Λ(wp

ij) = {wg
ij , i ∈ 1, · · · , R}. Assume these

suggested matching patches vote for the hidden semantic matching
wg∗

ij ∈ {1, · · · , n}, then the location of wg∗
ij can be simply derived

as:

L(wg∗
ij ) = L(wp

ij) +
1

R

R∑
i=1

∆(wp
ij , w

g
ij), w

g
ij ∈ Λ(wp

ij), (14)

With the estimated target location, k nearest patches in the target
image are then sampled as the compact semantic matching patches
of wp

ij , which are calculated as:

{wg∗
ij }k = Nk(L(wg∗

ij )), k � R, (15)

where Nk(·) returns the indices of the k nearest gallery patches
with respect to the inside calculated target location. In this way, the
computational load can be reduced to k×n×N2, k � R, which is
significant especially when N is large.

The final feature distance between Īp, Īg is then derived as,

D(Īp, Īg) =
1

k × n

k∑
i=1

n∑
j=1

δ(Āp,w
p
ij
, Āg,w

g∗
ij

), wg∗
ij ∈ {w

g∗
ij }k. (16)
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Fig. 8: Top ranked images selected by the proposed REGCT algo-
rithm. Images in the first column are four randomly selected probe
images, and the following are the top ranked gallery images of each
probe by REGCT. Images marked by green/blue/orange bounding
boxes in each row are the ground-truth matches of each probe.

IV. EXPERIMENTAL RESULTS

In this section, we present the details of our experimental results.
First we briefly clarify the experimental setup of the proposed graph
correspondence transfer algorithm, then we elaborate on the ablative
study of each component in the REGCT model to explore the impor-
tance of each part and give some insights on how to select the best pa-
rameter settings. Finally, we present the comparison results with some
state-of-the-art algorithms on five challenging benchmarks, including
the VIPeR [47] dataset, the Road [15] dataset, the PRID450S [48]
dataset, the 3DPES [49] dataset and the CUHK01 [50] dataset.

A. Experimental setup
1) Datasets: We conduct experiments on three challenging

single-shot datasets (VIPeR, Road and PRID450S), and two multi-
shot datasets (3DPES and CUHK01). The characteristics of each
dataset are detailed as follows:

VIPeR dataset: The VIPeR [47] is a challenging person re-
identification dataset consisting of 632 people with two images from
two cameras for each person. It bears great variations in poses and
illuminations, most of the image pairs contain viewpoint changes
larger than 90 degrees.

Road dataset: The Road dataset [15], consisting of 416 image
pairs, is captured from a realistic crowd road scene, with serious
interferences from occlusions and large pose variations, making it
quite challenging.

PRID450S dataset: The PRID 450S [48] dataset contains 450
pairs of images from two camera views. The very similar background
scene and many people wearing similar clothes make it very chal-
lenging for person re-identification.

3DPES dataset: The 3DPES dataset [49] contains 1011 images
of 192 persons captured from 8 disjoint camera views, the images
of which bear serious variations in view angles, illuminations, scales
and background clutters. The number of images for a specific person
ranges from 2 to 26, and the bounding boxes are generated from
automatic pedestrian detection.

CUHK01 dataset: The CUHK01 dataset [50] is a medium-sized
dataset for Re-id, captured from two disjoint camera views. It consists
of 971 individuals, with each person having two images under each
camera view. Different from VIPeR, images in CUHK01 are of higher
resolutions. On this dataset, we adopt the commonly utilized 485/486
setting for performance evaluation.

primary matching results

refined matching results 

Fig. 9: Some visualized patch-wise graph matching results. In each
pair of images, the bounding boxes with the same color refer to an
established correspondence by our algorithm.

2) Parameter setup: The proposed algorithm is implemented
in Matlab on an Intel(R) Core(TM) i7-5820K CPU of 3.30GHz.
The number of trees in the random forest model is 500. The best
configurations of (R, k) as well as the impacts of different patch
decompositions of human body are discussed in the following part.
All the parameters are available in the source code at http://www.
dabi.temple.edu/∼hbling/code/gct.htm.

3) Evaluation: We adopt the commonly used half-training and
half-testing setting [5], and randomly split the dataset into two equal
subsets. The training/testing sets are further divided into the probe
and gallery sets according to their view information. On all the
datasets, both the training/testing set partition and probe/gallery set
partition are performed 10 times and average performance is recorded.
The performance is evaluated by cumulative matching characteristic
(CMC) curve, which represents the expected probability of finding
the correct match for a probe image in the top r matches in the
gallery list.

We record the top ranked gallery images of some sample probe
images on the VIPeR dataset, which is presented in Fig. 8. As shown
in Fig. 8, the proposed REGCT algorithm can successfully rank
images visually similar to the probe image ahead of others, which
is the key requirement of most existing surveillance systems. Please
note the last row of Fig. 8, the top ranked gallery images by REGCT
are all with dark coats and blue jeans, and to some extent, the rank
1 image is visually more similar than the correct match marked by
orange bounding box w.r.t. the probe image. Therefore, the proposed
REGCT algorithm is able to handle the spatial misalignment problem
and generate satisfying ranking results for practical applications.

B. Ablation study
1) Visualized results of graph matching: To validate the

effectiveness of graph matching in establishing local semantic corre-
spondences, we present some patch-wise matching results in Fig. 9.
As shown, by taking into consideration the spatial and visual context
information during the graph matching procedure, the established
patch-wise matchings indeed can preserve the semantic correspon-
dences even if there are severe variations in poses and illuminations.

2) Influence of different patch decomposition: In order to
generate some insights into the optimal decomposition of human
body into local patches, we study the influence of different patch-
wise decompositions on the recognition performance. In specific, we
record the recognition performance obtained using different patch
sizes and different strides.

To evaluate the influence of patch size, we fix the stride to
stride h = 12, stride w = 8 (stride h is the stride along
the height side, and stride w is the stride along the width side).
The patch height values and width values are then selected from
{44, 32, 20} and {32, 24, 16} respectively, totally generating 9 com-
binations. Likewise, we study the impact of different patch strides
by fixing the patch size to 32× 24, and then varying stride h and
stride w within {16, 12, 8} and {12, 8, 6} respectively. The detailed
comparison results between different patch-wise decomposition set-
tings (on the VIPeR dataset) are illustrated in Table I and Fig. 10.

http://www.dabi.temple.edu/~hbling/code/gct.htm
http://www.dabi.temple.edu/~hbling/code/gct.htm


1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2019.2914575, IEEE
Transactions on Image Processing

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 8

TABLE I: Recognition performance with different patch-wise configurations on VIPeR dataset. We study the influence of different
configurations of both patch size and stride. Please note, in the patch size config, h20 w16 indicates the patch height and width are set to
20 and 16 respectively. Likewise, in the patch stride config, sh8 sw6 indicates that stride h and stride w are set to 8, 6 respectively. The
best results are marked in red font.

patch size config h20 w16 h20 w24 h20 w32 h32 w16 h32 w24 h32 w32 h44 w16 h44 w24 h44 w32
rank = 1 42.2 44.7 49.1 45.7 48.9 51.4 47.2 49.0 50.5
rank = 5 73.2 75.9 77.7 77.1 80.8 80.0 76.5 77.1 79.1
rank = 10 84.0 86.0 87.4 86.2 87.1 88.1 86.2 86.8 86.7
rank = 20 93.7 93.2 93.9 93.6 94.0 94.6 93.5 93.3 93.5
stride config sh8 sw6 sh8 sw8 sh8 sw12 sh12 sw6 sh12 sw8 sh12 sw12 sh16 sw6 sh16 sw8 sh16 sw12
rank = 1 49.2 49.3 47.1 49.5 49.7 46.0 48.4 47.1 45.9
rank = 5 77.0 77.7 75.8 77.9 78.1 75.4 76.7 78.2 74.7
rank = 10 86.0 86.4 85.9 86.6 87.4 85.2 86.0 87.3 85.7
rank = 20 93.4 92.9 92.8 93.0 93.7 92.1 92.6 93.7 93.0

(a) Recognition performance with different patch size configurations. (b) Recognition performance with different patch stride configurations.

Fig. 10: Analysis on the impacts of different patch decompositions.

As shown in Table I, the optimal patch size is 32× 32, achieving
the best performance at rank 1, 10, 20 and second best at rank = 5.
As for the different stride configurations, stride 12× 8 performs the
best at all the reported ranks among different stride configurations.
Meanwhile, from Fig. 10 (a) we can see that, with fixed patch height,
the recognition performance increases when patch width gets larger.
On the other hand, from Fig. 10 (b), we observe that, best recognition
performance is achieved at stride w = 8, when we fix stride h to
8, 12, 16 respectively. Based on the above analysis, we set the
patch size to 32×32 and strides to stride h = 12, stride w = 8
throughout the following experiments without special clarifica-
tion.

3) Analysis on different configurations of (R, k): The num-
ber of selected references (R) for calculating the distances between
test pairs has an impact on the re-identification performance. With a
small R, bad references may have a large impact on the patch-wise
distance calculation, deteriorating the recognition performance. By
contrast, if the value of R is large, the correspondences transferred
from less similar references may introduce inaccurate correspon-
dences, which also degrades the performance. In the original evalu-
ation setting [18], the optimal R for the VIPeR, Road, PRID450S,
3DPES and CUHK01 datasets are 20, 5, 10, 20 and 20, respectively.
In this paper, we propose to aggregate the arbitrary optimal number
(R) of noisy reference templates into k refined compact templates
to improve the robustness of correspondence transfer as well as the
testing efficiency. We conduct experiments to find out the best (R, k)
combination for all the benchmarks. More specifically, we set R to
R ∈ {10, 20, 50, 100}, and vary k within {1, 3, 5, 10}, generating in
total 16 configurations of (R, k).

As shown in Table II, generally, the best recognition performance

are achieved at small k with arbitrary optimal R. More specifically,
(R = 100, k = 3) outperforms other configurations on the VIPeR,
Road and PRID450S datasets. While on the 3DPES and CUHK01
datasets, (R = 50, k = 1) generates the best results. Another highly
expected phenomenon is that large k (e.g., set k to 10) generally
deteriorates the recognition performance regardless of the different
settings of R. These two facts validate that the proposed template
ensemble approach turns the multiple noisy reference templates into
a more robust and accurate matching pattern. And the reason for the
performance drop when using large k can be inferred from Eq. 15. In
Eq. (15), the final patch-wise matching is selected according to the
spatial proximity to the voted target location calculated by Eq. (14).
When k is large, more patches that deviate from the estimated target
location are included in the distance calculation, thus leading to
deterioration in the recognition performance.

As rank-1 performance is a very critical evaluation criterion for
person re-identification, we specially study the influence of different
(R, k) settings on the rank-1 recognition rates. As shown in Fig. 11,
generally, k = 3 works best for the VIPeR, Road and PRID450S
datasets, k = 1 is optimal on the 3DPES and CUHK01 datasets.
Compared with k, different configurations of R have relatively small
influence on the recognition rates. Since the number of R does
not affect the efficiency in the proposed novel evaluation setting,
REGCT is guaranteed to obtain favorable performance with better
efficiency than the baseline GCT [18]. In the following part, the
best (R, k) configurations are utilized for each dataset without
special clarification.

4) Analysis on the effectiveness of template ensemble:
As discussed earlier, the proposed REGCT can reduce the com-
putational load from R × n × N2 to k × n × N2 (k � R),
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TABLE II: Recognition performance of different (R, k) configurations. In this table, each column contains the recognition rate at the same
rank obtained with different (R, k) configurations. At each rank, the best and second best recognition rates are marked in red and blue
respectively. Best viewed in color.

(R,k)
Datasets VIPeR Road PRID450S 3DPES CUHK01

r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

R=10

k=1 49.9 78.3 87.2 94.2 86.4 95.3 97.5 99.0 69.0 86.3 92.0 96.7 75.3 92.0 95.5 99.0 66.2 82.9 89.8 93.7
k=3 51.6 80.1 88.3 94.5 88.5 96.0 97.7 99.4 69.1 88.2 93.4 97.0 75.3 91.7 95.8 98.3 65.4 84.6 89.5 94.2
k=5 51.2 80.0 88.3 94.3 88.2 95.5 98.2 99.3 67.8 87.0 92.7 96.8 73.3 89.9 96.2 99.7 60.3 81.5 88.3 92.9
k=10 49.4 78.9 87.2 94.4 86.3 95.1 97.3 98.5 60.4 83.6 90.1 95.6 72.9 91.7 95.8 98.4 58.6 78.9 84.7 90.9

R=20

k=1 51.3 79.2 88.3 94.1 87.7 96.1 97.8 99.2 68.4 86.9 92.0 96.4 72.9 90.6 95.5 97.9 66.7 83.8 90.7 93.9
k=3 51.8 80.0 87.9 94.7 88.8 96.3 98.5 99.6 69.5 87.9 92.9 96.9 76.0 91.7 95.1 98.3 64.3 83.5 89.3 94.5
k=5 51.2 79.8 88.0 94.7 88.6 96.1 98.1 99.3 67.4 87.5 92.8 96.5 75.7 91.3 96.5 99.0 64.0 82.0 87.7 92.7
k=10 49.1 80.0 87.2 94.2 86.8 95.3 97.3 98.8 63.8 85.5 91.2 96.2 71.7 88.5 94.3 97.7 58.5 78.9 84.8 91.0

R=50

k=1 51.1 79.3 88.0 94.3 87.1 95.0 97.3 98.8 68.9 87.9 92.5 96.2 77.1 92.0 96.5 99.3 67.4 86.2 90.9 94.6
k=3 52.5 80.3 88.5 94.5 87.0 95.6 98.1 99.4 67.2 86.6 91.8 96.0 76.7 91.3 95.5 98.3 63.6 82.1 88.5 93.0
k=5 48.0 79.4 87.4 94.1 88.5 95.3 97.6 99.4 67.7 86.3 92.5 95.9 68.4 89.9 95.1 97.9 61.7 81.6 88.5 92.9
k=10 49.2 78.4 87.3 93.9 87.8 95.4 97.8 99.3 60.6 84.3 91.1 96.1 75.0 88.0 94.3 97.9 58.6 79.0 85.2 91.0

R=100

k=1 51.2 80.0 88.0 94.4 86.7 95.0 97.2 98.5 69.1 86.7 92.2 96.4 73.3 90.6 95.5 97.6 66.5 84.5 90.0 94.2
k=3 52.9 80.5 88.7 94.6 88.5 96.5 98.6 99.4 69.7 88.3 93.3 96.4 75.3 91.3 95.5 98.3 65.2 83.8 89.9 94.2
k=5 51.6 80.1 88.5 94.6 89.0 95.9 98.1 99.2 66.6 86.6 92.4 96.6 71.9 89.9 93.8 97.6 61.6 81.9 88.1 93.4
k=10 49.5 79.6 87.6 94.0 86.4 95.0 97.0 98.8 62.3 85.4 91.6 96.0 67.7 89.6 93.2 96.4 58.6 78.9 85.2 90.9

Fig. 11: Influence of different (R, k) settings on the rank-1 recognition performance on five benchmarks. Each group of bars illustrates the
rank-1 performance at a fixed k with varying R, and each dataset contains four successive groups of bars.

TABLE III: Comparison results under different experimental settings to demonstrate the effectiveness of templates ensemble.

Settings
Datasets VIPeR Road PRID450S 3DPES CUHK03

r=1 r=10 r=20 r=1 r=10 r=20 r=1 r=10 r=20 r=1 r=10 r=20 r=1 r=10 r=20

GCTbest 49.4 87.2 94.0 88.8 98.4 99.6 60.0 89.1 94.6 72.5 95.0 97.7 62.2 88.9 93.5
REGCTbest 52.9 88.7 94.6 88.5 98.6 99.4 69.7 93.3 96.4 77.1 96.5 99.3 67.4 90.9 94.6

GCTone 46.0 85.1 93.1 83.1 96.3 98.8 58.4 84.3 89.8 69.8 95.5 97.2 61.9 87.6 92.8
REGCTone 51.2 88.0 94.4 87.7 97.8 99.2 69.1 92.2 96.4 77.1 96.5 99.3 67.4 90.9 94.6

making REGCT more efficient than GCT when N is large. In this
subsection, we demonstrate that template ensemble in the proposed
REGCT also brings improvements to the recognition performance.
In particular, we record the best recognition rates obtained with
optimal parameter settings using both REGCT and the baseline GCT
(we denote the experimental settings as REGCTbest and GCTbest

respectively). Besides, to further demonstrate the superiority of the
aggregated compact templates over the original noisy templates, we
record the performance obtained by using one ensembled template

and one original template respectively (denoted as REGCTone and
GCTone). Please note for fair comparison, experiments under all
the four settings are carried out with (h,w, stride h, stride w) set
to (32, 32, 12, 8) respectively. The detailed comparison results are
recorded in Table III.

As shown in Table III, the best performance of REGCTbest ob-
tained using the optimal (R, k) settings on each dataset consistently
outperforms the corresponding best results recorded in GCTbest [18],
except slightly lower but competitive rank-1/rank-20 recognition rates
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TABLE IV: Comparison results of utilizing different body configuration comparison strategies for Re-ID. REGCTbest records the results
obtained by using the body orientation based strategy, while REGCTbest(w/p) reports the results of utilizing the pose context based strategy.

Settings
Datasets VIPeR Road PRID450S 3DPES CUHK03

r=1 r=10 r=20 r=1 r=10 r=20 r=1 r=10 r=20 r=1 r=10 r=20 r=1 r=10 r=20

REGCTbest 52.9 88.7 94.6 88.5 98.6 99.4 69.7 93.3 96.4 77.1 96.5 99.3 67.4 90.9 94.6
REGCTbest(w/p) 53.5 89.1 94.7 88.9 98.9 99.6 70.9 93.5 96.5 78.0 96.5 99.1 68.0 91.2 94.9

(a) (b)  Orientation based results (c)  Pose Context based results

Fig. 12: The top-10 ranked reference image pairs for two sample test pairs. (a) Two sample test image pairs. (b) The top-10 selected reference
positive training pairs generated by the orientation based method. (c) The top-10 ranked reference image pairs selected by the pose context
descriptor based method. As shown, the context descriptor generates reference images with more consistent body configurations.

on the Road dataset. As for the one template setting, compared
to GCTone, REGCTone significantly boosts the performance at all
ranks across all the five benchmarks. This obvious performance
gain validate that the ensembled compact templates are more robust
and accurate than the original noisy matching templates, therefore
benefiting the recognition performance by a large margin. Besides,
in REGCT, the results of REGCTone are fairly close to REGCTbest,
which means competitive recognition performance can be obtained
with only one reference template (therefore significantly reducing the
computational load). Please note that till now, all the experiments
are recorded by using the body orientation based reference templates
selection. The effectiveness of the proposed pose context descriptor
based reference selection is discussed in the following part.

5) Evaluation on different body configuration comparison
strategies: We also conduct experiments to demonstrate the superi-
ority of the proposed novel pose context descriptor in modeling body
configurations than the original orientation based method in [18]. We
present both the qualitative and the quantitative study as follows:

Qualitative Study: For each test pair, we record the top-10 ranked
reference pairs according to their pose-pair configuration similarities
calculated by both the orientation based and the pose context based
methods. As shown in Fig. 12, the orientation based method generates
more noisy reference images (marked by the red bounding boxes)
than the pose context based results.

Quantitative Study: We also record the recognition performance
based on the two different reference selection strategies. The detailed
comparison results on challenging datasets are presented in Table IV.
As illustrated in Table IV, the pose context descriptor based reference
selection can indeed boost the Re-ID performance. But the relatively
slight performance gain indicate that the proposed REGCT algorithm
is robust to different templates selection strategies. This indicates
that we can save the efforts of trying to build more accurate body

TABLE V: Comparisons of top r matching rate using CMC (%) on
VIPeR dataset. The best result is marked in red font, and the second
best in blue.

Methods r=1 r=5 r=10 r=20

SalMatch [3] 30.2 52.3 65.5 79.2

Semantic [51] 41.6 71.9 86.2 95.1

LSSCDL [52] 42.7 − 84.3 91.2

KISSME [5] 27.3 55.3 69.0 82.7

SVMML [6] 30.0 64.7 79.0 91.3

kLFDA [13] 32.4 65.9 79.8 90.8

Polymap [14] 36.8 70.4 83.7 91.7

LMF+LADF [53] 43.4 73.0 84.9 93.7

LOMO+XQDA [7] 40.0 68.1 80.5 91.1

DCSL [54] 44.6 73.4 82.6 −
TMA [11] 48.2 − 87.7 95.5

TCP [55] 47.8 74.7 84.8 91.1

DGD [56] 35.4 62.3 69.3 −
Spindle-Net [57] 53.8 74.1 83.2 92.1

DML2V [58] 50.4 80.5 88.7 95.0
CSL [15] 34.8 68.7 82.3 91.8

REGCTbest(w/p) 53.5 81.3 89.1 94.7

configuration descriptors, but pay more attention to improving the
matching accuracy of the training templates in the future research.

C. Comparison with state-of-the-arts
To demonstrate the effectiveness of the proposed approach, we

compare the proposed REGCT with some state-of-the-art approach-
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es on five challenging datasets. Please note results generated by
REGCTbest(w/p) are utilized in the following comparisons. And the
detailed comparison results are presented as follows.

On the VIPeR dataset, we compare the REGCT with other
sixteen algorithms, including SalMatch [3], Semantic [51], LSS-
CDL [52], KISSME [5], SVMML [6], kLFDA [13], Polymap [14],
LMF+LADF [53], LOMO+XQDA [7], DCSL [54], TMA [11],
TCP [55], DGD [56], Spindle Net [57], DML2V [58] and CSL [15].
The comparison results are presented in Table V. As illustrated
in Table V, the proposed REGCT algorithm achieves the best
recognition rate at rank 5, 10, and competitive performances at rank
1, 20. Please note DCSL [54], TCP [55], DGD [56], and Spindle
Net [57] are deep feature based end-to-end framework, the favorable
performance of REGCT against these algorithms demonstrates the
effectiveness of our system for Re-ID. Besides, compared with
CSL [15] and DCSL [54], which also aim to establish local semantic
correspondences, our REGCT evidences notable performance gain.
This validates the superiority of exploiting contextual information
via graph matching to address the spatial misalignment problem.

TABLE VI: Comparison of top r matching rate using CMC (%) on
Road dataset. The best result is marked in red font, and the second
best in blue.

Methods r=1 r=5 r=10 r=20

eSDC-knn [3] 52.4 74.5 83.7 89.9

CSL [15] 61.5 91.8 95.2 98.6

REGCTbest(w/p) 88.9 96.8 98.9 99.6

The Road dataset is proposed in CSL [15]. For comprehensive
comparison, we also report the result on this dataset, and compare it
with eSDC-knn [3] and CSL [15]. As shown in Table VI, compared
to CSL [15], our algorithm obtains significant improvements of
27.4%, 5.0%, 3.7%, 1.0% at rank 1, 5, 10, 20 respectively. Owing
to the sample-specific patch-wise matching adopted in our algorithm,
significant performance gain is achieved compared with the camera-
specific global matching structure adopted in CSL [15].

On the PRID450S dataset, we compare with KISSME [5], SC-
NCDFinal [12], Semantic [51], TMA [11], NSFT [59], DML2V [58]
and CSL [15]. As shown in Table VII, our algorithm achieves the best
recognition performance at all ranks. This obvious performance gain
can be attributed to the accurate patch-wise correspondence via graph
matching as well as the robust correspondence transfer via template
ensemble.

TABLE VII: Comparison of top r matching rate using CMC (%) on the
PRID450S dataset. The best result is marked in red font, and the second best
in blue.

Methods r=1 r=5 r=10 r=20

KISSME [5] 33 − 71 79

SCNCDFinal [12] 41.6 68.9 79.4 87.8

Semantic [51] 44.9 71.7 77.5 86.7

TMA [11] 54.2 73.8 83.1 90.2

NSFT [59] 40.9 64.7 73.2 81.0

DML2V [58] 64.5 85.7 92.1 96.0
CSL [15] 44.4 71.6 82.2 89.8

REGCTbest(w/p) 70.9 89.1 93.5 96.5

On the 3DPES dataset, we compare the REGCT method with state-
of-the-arts including LFDA [10], ME [9], kLFDA [13], PCCA [8],
rPCCA [13], SCSP [4], WARCA [60], DGD [56], Spindle Net [57]
and CSL [15]. As shown in Table VIII, the proposed algorithm
significantly outperforms the state-of-the-art algorithms, and even

TABLE VIII: Comparison of top r matching rate using CMC (%) on
3DPES dataset. The best result is marked in red font, and the second
best in blue.

Methods r=1 r=5 r=10 r=20

LFDA [10] 45.5 69.2 − 86.1

ME [9] 53.3 76.8 − 92.8

kLFDA [13] 54.0 77.7 85.9 92.4

PCCA [8] 41.6 70.5 81.3 90.4

rPCCA [13] 47.3 75.0 84.5 91.9

SCSP [4] 57.3 79.0 − 91.5

WARCA [60] 51.9 75.6 − −
DGD [56] 56.0 − − −

Spindle-Net [57] 62.1 83.4 90.5 95.7

CSL [15] 57.9 81.1 89.5 93.7

REGCTbest(w/p) 78.0 92.4 96.5 99.1

TABLE IX: Comparison of top r matching rate using CMC (%)
on CUHK01 dataset. The best result is marked in red font, and the
second best in blue.

Methods r=1 r=5 r=10 r=20

Semantic [51] 32.7 51.2 − 76.3

kLFDA [13] 32.8 59.0 69.6 −
IDLA [36] 47.5 71.5 80.0 −

DeepRanking [37] 50.4 75.9 84.1 −
ME [9] 53.4 76.3 84.4 −

GOG [61] 57.8 79.1 86.2 −
SalMatch [3] 28.5 46.0 − 67.3

CSBT [62] 51.2 76.3 − 91.8

TCP [55] 53.7 84.3 91.0 96.3

DML2V [58] 65.0 85.6 91.1 95.1

REGCTbest(w/p) 68.0 86.9 91.2 94.9

deep learning based algorithm [57]. Note that the images in this
dataset are automatic detection results from videos captured under
eight cameras, bringing serious pose variations, illumination changes
and scale variations. With the help of the learned correspondences
templates, our REGCT model is robust against these issues.

On the CUHK01 dataset, we compare with Semantic [51], kLF-
DA [13], IDLA [36], DeepRanking [37], ME [9], GOG [61],
SalMatch [3], CSBT [62], TCP [55] and DML2V [58]. The detailed
comparison results are presented in Table IX. As shown in Table IX,
the proposed graph matching and correspondence transfer framework
can achieve favorable results on this medium-sized dataset. More
specifically, the proposed REGCT algorithm obtains best rank 1
recognition rate (a 14.3% performance gain over TCP [55], a part
based deep learning algorithm). And the better performance compared
with other algorithms also demonstrate the superiority of the REGCT
model.

D. Analysis on Typical Failure Cases
We record the typical failure cases to explore the limitations

of the proposed REGCT algorithm. As shown in Fig. 13, when
severe self-occlusion occurs, the appearances of the same person may
be dramatically different across different camera views, rendering
it difficult for REGCT to establish enough local correspondences
between matched image pairs. Even though, the proposed REGCT
algorithm can rank visually similar images with the probe ahead of
others, which is valuable for further manual verification.

V. CONCLUSION

This paper proposes a robust and efficient graph correspondence
transfer (REGCT) approach to explicitly address the spatial mis-
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Fig. 13: Typical failure cases. The first image in each row is the
probe image, the second one is the correctly matched gallery image,
followed by the ranking list obtained by REGCT.

alignment issue in Re-ID. The framework of off-line patch-wise
correspondence learning and on-line correspondence transfer helps to
flexibly establish robust and accurate patch-level matching patterns
for each test pair. The proposed template ensemble strategy is
demonstrated to improve the efficiency as well as notably boost the
recognition performance compared to the baseline GCT. The pro-
posed pose context descriptor further benefits the REGCT model via
more accurate templates selection, leading to more robust patch-wise
correspondence transfer in the testing phase. Extensive experiments
on five challenging datasets demonstrate the effectiveness of the
REGCT model.
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